5 Steps for Migrating Data to IBM DB2 with BLU Acceleration

Easily optimize data from an existing data warehouse for big data analytics

In the dynamics of today’s business world the success of any organization depends largely on organizational decisions made at the appropriate times. And a reliable data warehouse environment plays a pivotal role in helping drive the business decisions that can move an organization toward successful outcomes.

IBM® DB2® 10.5 with BLU Acceleration offers an innovative database and highly advanced technology for business intelligence (BI) applications that is designed to provide cost-effective, optimized performance and ease of use in the following ways:

  • Performance: DB2 10.5 with BLU Acceleration provides a fit-for-purpose, next-generation database for big data analytics.
  • Simplicity: DB2 10.5 with BLU Acceleration creates no complexities around the database design; simple tables can be created and data can be loaded into them with the workload set to ANALYTICS.
  • Cost savings: DB2 10.5 with BLU Acceleration offers a tremendous level of compression that helps significantly reduce storage and costs for backup media.

Migrating data from an existing warehouse to DB2 10.5 with BLU Acceleration can be handled with ease and provide several benefits at the same time.

Easy migration setup

The data migration task is easy to implement in DB2 10.5 with BLU Acceleration. The only requirement is to have an understanding of the application to be able to decide whether to convert the tables from row organize to column organize (see Figure 1).

Schema Purpose and Activity   Table Organization Decision
STAGING Store data extracts as is from an enterprise resource planning (ERP) application and other source systems. The month-end activity extensively uses the Range Partitioning DETACH, LOAD, and ATTACHES processes. No conversion of the table from row organize to column organize to avoid making changes to the month-end processes.
DATASTORE Intermediate transformed data and mostly tables with no Multi Dimensional Clustering (MDC) and Range Partitioning features. Convert tables from row organize to column organize.
DATAMARTS Presentation layer tables with no additional table features, except materialized query tables (MQTs), facilitate colocation joins. Drop MQTs and convert base tables from row organize to column organize.

Figure 1. Decision making schema for table conversion based on the intended application

For this performance case study between DB2 10.5 with BLU Acceleration and the existing software stack, the source system has a processor that is 33.6 times faster than the target DB2 10.5 with BLU Acceleration test server. The source system also has 16 times more memory than the target system.1

The following five steps can be used to perform the data migration task:

1. Set the workload and create a 32 KB page size database.


Note: The ANALYTICS workload setting will automatically set INTRA_PARALLEL (DBM) to YES, DFT_DEGREE (DB) to ANY, and DFT_TABLE_ORG (DB) to COLUMN.

2. Extract the table definition from the source system, and create the similar table in the target with an additional ORGANIZE BY ROW clause in the create table statement—without any constraints and secondary indexes.

3. Load data into the DB2 10.5 with BLU Acceleration database tables using the OS pipe, or using flat files.

4. Convert the data and index table spaces from DMS to AUTOMATIC STORAGE, if any.


5. Convert the tables from row organization to column organization using the db2convert utility:

Table RowsNum InitSize (MB) FinalSize (MB) CompRate (%) State
-------------------------------------------------------------------------------------------"DATASTORE"."GL_PRI_AGG_DS" 24766845 2290.00 1100.12 51.96 CompletedPre-Conversion Size (MB): 2290.00
Post-Conversion Size (MB): 1100.12
Compression Rate (Percent): 51.96


Data compression and relative performance results

The IBM DB2 10.5 with BLU Acceleration database tables were compressed by 83 percent of the base uncompressed data—no index—on earlier versions of DB2.2 The storage-savings graph shown in Figure 2 provides an eye-opening comparison—but the best part is yet to come.

5 Steps for Migrating Data to IBM DB2 with BLU Acceleration – Figure 2

Figure 2. Substantially increased compression for DB2 10.5 tables compared with earlier DB2 versions

Overall storage savings, including the indexes on the source system, resulted in about 93 percent, which represents a highly significant 14 times reduction.3 What do these results mean? Primarily, they demonstrate efficient use of storage on the server, significantly smaller data volume and hence performance benefits (see Figure 3) and considerable cost savings for backup media, and an enhanced end-user experience.

5 Steps for Migrating Data to IBM DB2 with BLU Acceleration – Figure 3

Figure 3. Dramatically enhanced performance for integrated IBM Cognos BI reporting


Rapid data migration

The entire system was successfully migrated, integrated, and tested with the application in less than two days. The process was particularly seamless and required significantly reduced effort. The performance of the new system demonstrates that DB2 10.5 with BLU Acceleration is designed to provide optimal performance that helps deliver big data analytics solutions at the speed of thought.

What do you think about these results? Share any thoughts or questions in the comments area.

1,2,3 Results based on testing performed May 2013 under the guidance of IBM Hursley Lab — and Simon Woodcock — in the UK by Mohankumar Saraswatipura on a Reckitt Benckiser D5100 Data stage server.